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In this paper we present a derivation of the hyperbolic type of Fokker-Planck equations governing the
dynamics of the numerical values associated to a set of observables of a many body system. The ensuing
transport equations for the appropriate averages of such variables, namely the gross variables, are also
obtained. In both cases we simply extend the ideas set forth by M. S. Green in his work on the statistical
mechanics of transport phenomena [J. Chem. Phys. 20, 1281 (1952)]. These types of equations have been
recently used to cope with a large class of transport phenomena. We thus discuss at length the general-
ized thermodynamic frame to which these equations belong and compare the results with other recent

approaches to irreversible thermodynamics.

PACS number(s): 05.40.+j, 05.70.Ln, 05.60.+w

I. INTRODUCTION

In recent years a strong interest has arisen to cope with
transport processes using hyperbolic type differential
equations, sometimes also referred to as the telegraphist
equations. This trend contrasts with the ordinary trans-
port equations of the parabolic type which stem from the
postulates of linear irreversible thermodynamics (LIT). It
appears that the first derivation of a telegraphist equation
in connection with diffusion type processes originates in
the continuum approximation to the evolution equation
describing a persistent random walk [1]. In this context,
it has been afterwards applied to a wide variety of situa-
tions related to this problem. A very recent and per-
tinent review of all these efforts may be found in the work
by Masoliver, Porra, and Weiss [2—-4]. In a rather
different context, it has been recently pointed out that a
telegraphist type transport equation leads to an “almost
exact” interpretation of generalized hydrodynamics [5].
In solid state physics a rather interesting use of this type
of equations is found in the study of dispersion and tun-
neling of electrons in one dimension leading to a first
principles quantum mechanical interpretation of the Lan-
dauer effect [6,7]. The properties of solutions to the
telegraphist type equations as well as their relationship to
nonequilibrium properties of systems undergoing irrever-
sible processes have also been studied in detail [8,9].

From a phenomenological point of view the telegra-
phist transport equation is readily obtained when an ordi-
nary conservation equation, mass, momentum, energy,
etc. is supplemented by a constitutive equation of the
Maxwell-Cattaneo-Vernotte (MCV) type [10,11]. The
main feature of the resulting equation is that it predicts a
propagation of the corresponding perturbation with a
finite velocity thus solving the old problem inherent in
LIT, parabolic type equations lead to infinite velocities.
What is completely lacking in the literature is a first prin-
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ciples derivation of hyperbolic type transport equations.
Buried in this derivation lies also the question related to
the type of irreversible thermodynamics to which these
equations belong, a theory that clearly goes beyond the
domain of LIT.

The purpose of this paper is to show how using the
pioneering ideas introduced by Green in 1952 on the
mesoscopic approach to the theory of irreversible pro-
cesses [12,13] one can very easily derive telegraphist like
equations. In fact, one first obtains Fokker-Planck type
hyperbolic equations for the probability amplitudes
describing the motion of the dynamical variables, and
then, after appropriate averaging one obtains hyperbolic
equations for their conditional averages, namely, the
transport equations. With these results one is further
capable of setting the mesoscopic basis of what we shall
here refer to as a generalized irreversible thermodynam-
ics which has many common features to the theory now
referred to as extended irreversible thermodynamics
(EIT) but it is not identical to it.

The paper is divided as follows: In Sec. II we will
briefly summarize Green’s ideas and argue how by
correctly interpreting the time interval required to speci-
fy a change between a dynamical variable one can easily
derive a hyperbolic type Fokker-Planck equation. The
ways in which these results differ from those obtained by
Green are discussed. In Sec. III we develop the full ther-
modynamical formalism that arises from the results of
Sec. II and we leave for Sec. IV some pertinent conclud-
ing remarks.

II. THE GENERALIZED
FOKKER-PLANCK EQUATION

We start from the premise that one can identify a set of
observables in the system each one of which is represent-
ed by a phase space function A4(T,?), where I stands for
the position in phase space I'=(x,p) and ¢ for time.
Therefore, the vector A(T,t)={A,(T,z), i=1,...,r}
stands for the r observables in the system. Each observa-
tion performed on the system associates a number g; with
a certain error Ag; to each observable so that
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a(t)=1{a,(t)]a;(t) < A;(T,t)<a;+Aa;} is the vector asso-
ciated to each observation [14]. The set of values for a
are now regarded as random processes and, moreover, we
assume that the vector A represents a complete set of ob-
servables [12]. The average values of the a variables to be
defined later are known as the gross variables for the sys-
tem.

If we denote by W(a,,t+7;) the probability that an
event specified by the vector a; occurs at a certain time
t + 7, then by the standard Chapman-Kolmogoroff equa-
tion [15] written in Chandrasekhar’s form [16], we know
that (see Appendix A)

W(ak,t+7'k)=fW(ak—Aak,t)W(Aak,Tk Md(Aay) ,

(1)

where Ag,, is the change of the observables g, in time 7,
W(a, —Aag,t) the probability that a, has the value

—Aa, at time t and W(Aa,7,) the probability that
the change Aa; occurs in time 7,; also, k runs from
1,...,r, the number of observables in the system. The
next step to be undertaken is the crucial one in this whole

|
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analysis. The way in which one handles 7, has become a
rather controversial and debatable point in almost any
derivation of a differential Fokker-Planck equation from
Eq. (1). Indeed, let us recall that going as far back as
Einstein’s work on this question [17], 7, is first assumed
to be a finite time, small compared with a macroscopic,
hydrodynamic time but large compared with a micro-
scopic one. 7, however, must be long enough to assure
that the events a; —Aaq; and a; are independent. In the
usual analysis of these derivations, the limit 7, —O0 is tak-
en without any further arguments [18]. As Firth [19],
Kirkwood [20], and others have repeatedly pointed out,
this procedure is inconsistent. In fact one can even show
that in order that the process governing the dynamics in
a space is Markovian, 7, must be strictly finite [21].

After these remarks we proceed with our analysis of
Eq. (1) expanding all quantities there appearing in powers
of Ag, and 7,. If we now keep terms up to powers in 7%,
and in (Aay )2 and further, not to violate Pawula’s
theorem [22] we assume that all the moments of the tran-
sition probability W(Aa,,r,) of order n =3 vanish, we
arrive at the result that

W _ | W ) R4
-Bt—Tk+'—at—2—Ti=f —; a——Aa W(Aak,'rk + 2 92 a AaiAajW(Aak,Tk)
IW(Aay,Ty) Py % aW(Aak,Tk)
_g W(ak,t)~—i—*ﬂ 2 3a, 3, Aa;Aa;
FW(Aa,,7,) B
+—= %Wak, )WAG.‘A“/‘ d(Aay), k=1,...,r, (2)
I
where use has been made of the fact that where,
= _ (Aq;) _ (Aa Aq; )
[ wday, 7 )d(Bay)=1 7 (a,)= . Ey(ap) . ©)
and d(Aay ) stands for d(Aa,)d(Aa,) - - - d(Aa,). *

Defining the first two moments of W(Aa,,7, ) as

(Ag;)= [ Aaq;W(Aay, 7, )d(Agy) | (3a)
(AaiAaj)=%aniAajW(Aak,rk)d(Aak) . (3b)
after slight rearrangements Eq (2) may be rewritten as
W
= {W{Ag;
T}zc atz +Tk at 2 a ( al>}
— —{W(Aq;A
*2 aa a (8a;ha;)]
4)
or dividing both members by 7,
3*W | oW
+___
T
258— ~Pla W3 5 g,,(ak . )

Equations (5) and (6) are the main result of this paper.
They are similar in structure but of different content as
those derived by Green in his original paper [12]. The
left hand side contains a second-order time derivative of
the probability amplitude W(a,,t+7,) and most impor-
tant, the a-dependent quantities ¥,(a, ) and &,;(a; ) do not
require to be evaluated in the limit when 7,—0. Indeed
Eq. (5) is completely independent of this assumption and
the only reason for the vanishing of higher-order terms in
7, and in (Ag, ) is, as mentioned before, the consistency
requirement imposed by Pawula’s theorem. It is needless
to emphasize that Eq. (5) is now a hyperbolic type
Fokker-Planck equation from which we expect to be able
to derive hyperbolic type transport equations. This is the
subject of another section.

To finish with the discussion regarding the content of
Eq. (5) we now evaluate the coefficients of Egs. (6) for
finite times. This process is considerably simplified by
noticing that following steps identical to those used by
Green, Eqgs. (6) may be rewritten as follows,
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(Aai)=(v-)Tk

Ea w(a)f ‘ar [° do{vp(0))

M

w(a)

and
Tk g T, !
(8g;pa;)= [ “dr [ "ds[(vp;(r'—s))
+ (v (7 =s)], ®)

where w(a)Aa is the volume in a space and v;(o) is
defined through the obvious relation, (T, )
—a;(Ty)= [ *v,(T,)do, v,(T,) is the speed with which
the phase space point I' travels in phase space. Here
w(a)Aa stands for w(a; )Aa;, k=1,...,r.

To undertake the last step of the calculation we need to
evaluate the integrals appearing in Egs. (7) and (8) taking
all contributions up to order 72. This task was accom-
plished some years ago by one of us [13] so we shall skip
all clumsy details and refer the reader to the original
source. To proceed with the calculation we use the al-
ready established properties of the correlation matrix
(v;v;(0)) [12], namely,

(a) (vw;(a))=(vv;(—0)),
(b) lim (vv;(0))={(v;){v;),

(©) [ dolCu,(0) = (0,) (v, ) 1=y ap)

Notice that contrary to Green’s procedure, the upper
limit of the integral in (c) is 7;, not infinity. Now, it is
easy to see that

_ [ n
.7:f0 dTlfo dU(v,-vj(a))
=”'kffkda(l-a/7'k)(v,-v-(a)) .

Next, adding and subtracting (v;){v;) from the right
hand side of this expression using condmons (b) and (c)
and noticing that o /7, ~0 since 7, >>0 one gets that

‘7=Tk§ij(ak )+%Ti<v, )(Uj ) ’
which together with condition (a) leads to the result that
- 1 d
<Aa,' > - (U,- >Tk + z)m ? ajw(a)[mé—’j(dk )
1)) T,
which substituted in Eq. (6) gives

Via,)= <v)+——2 w(a)[é‘,](ak
+47 (o) ()],
Vila)=(v,) +—— 2 o(a)Cy(ay, ) )
J
where
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Cijlay, 7 )=E;(a )+ 57 (v, ) (w; ) . (10)

Proceeding in a similar way we get that

&;j(a)=1[Cyla, 7))+ Cjilag, 7 ) 1=Cylap, ), (11

since C;; is symmetric under the exchange of indices i and

Jj23].
If we now substitute Egs. (10) and (11) into Eq. (5) we
find that

e aw
ka2 ot

w

[( v; )+ ( ) —a—a)(a)CU(ak,'rk)

+§, a%.J'Cij(ak,'rk)W] . (12)

We want to emphasize that the main difference be-
tween Eq. (12) and the one derived by Green [see Eq. (30),
Ref. [12]] lies not only on the fact that by keeping 7,
finite the second order in time derivative in W appears in
the left hand side but also that the quantities C;;(a, ),
here playing the role of generalized transport coefficients
satisfying Onsager’s reciprocity relations, are also state
[(a) dependent] and time dependent. In this sense this
result is in agreement with the early work of Kirkwood in
which he computed the friction coefficient in a fluid [20]
and with more recent work of Hurley and Garrod [24]
who generalized Onsager’s reciprocity theorem to state
and time dependent transport coefficients. A broader dis-
cussion of the implications behind these ideas has been
reported earlier [25,26].

III. PHENOMENOLOGICAL IMPLICATIONS

In this section we undertake the task of deriving the
most relevant phenomenological implications arising
from Eq. (12). We begin with the corresponding equa-
tions of motion that are obeyed by the average values
(a; ) associated to each of the variables a,. These aver-
ages are defined as

(ak>=fak W(a® tyla,,t)da ,

where da=[]/_,da; and W(a”,t,la,,t) is the condi-
tional probability that the event characterized by a,
occurs at time ¢ provided that at an earlier time ¢, it had
the value a,%’. Multiplying Eq. (12) by a, and integrating
by parts (see Appendix B) we get that,

d*(a; ) d(a
dtzk 4 k _f (uk>+zckl(ak,Tk)algw(a)
J

Tk

+2

Ck](ak,fk) Wda .

(13)

If we now assume that the conditional probability W is
sharply peaked around the mean values (g, ), Eq. (13)
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reduces to a set of ordinary differential equations, name-
ly,

d2<ak) d(dk>
T
koar? dt
= (vk+2ij(ak,'rk)M—)-
J da,
+3 2-Ciapm) (14)
j aaj ke Tk (al)"'(a,),

where, we emphasize, 7, is the characteristic time associ-
ated to the number variable ;.

The set of Egs. (14) for {a;) k=1,...r, r being the
number of observables, are the sought transport equa-
tions which as expected, are of the hyperbolic type
differential equations. If 7, —0 they reduce to those de-
rived by Green [12]. It is now a straightforward step to
convince oneself that all the steps given in Green’s work
to show that the equilibrium solution to Eq. (14) has to
be of the form w( A)¥Y[E( A)], where W[E( A)] is deter-
mined by the distribution of energy H(I')=E[ A(I")]
where H is the system’s Hamiltonian, follow at once.
Thus, for Eq. (14) the equilibrium solutions exists as has
been also pointed out in specific cases treated in the
literature [8,9].

Moreover, to study the significance of Egs. (14), let us
introduce following Onsager, the fluxes associated to the
gross variables (a, ) by

d<ak> _
dt ko
so that Eq. (14) now reads as
aJ, dlnw(a)
Tk‘&_t—‘f'.]k:(vk)'{'? ij(ak,rk)T
+2 iC‘](A(ak,’rk) N (15)
< 0a;

where we omit the explicit notation that the right hand
side must be evaluated at the expectation values (a; ).
We first notice that if 7, —0, (v, ) is neglected since as
Green proved it gives no contributions to an irreversible
process, Cy; which is now identical to §,; according to
Eq. (10) is assumed to be constant and the force conjugat-
ed to J is defined as S /da;, where S is the local non-
equilibrium entropy given by S =kjglnw(a) according to
Boltzmann’s definition, Eq. (15) reduces to the well
known flux-force relations of linear irreversible thermo-
dynamics (LIT)

d(ak> _ _ r
a —Jk—zlgijj, (16)
j=
where kz, Boltzmann’s constant is absorbed in the

definition of §j,. Since §; =§,; the correlation or trans-
port matrix &, satisfies Onsager’s reciprocity condition.
It is then clear that the transport equations given by (15),
even ignoring the term (v, ) are more general than the
linear relations of LIT.
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It is worth noticing, that Egs. (15) are of the so called
Maxwell-Vernotte-Cattaneo type when 7, is interpreted
as the nonzero relaxation time of the flux J,. As men-
tioned in the Introduction these equations are very suc-
cessful in eliminating the infinite speed propagation of the
disturbance produced in a system by an irreversible pro-
cess. Since the coefficients Cy;(a,, 7, ) are symmetric, one
can state that the underlying thermodynamic theory to
which these equations belong still satisfies the Onsager re-
ciprocity condition in a more general form that the one
implied by Eq. (16). If we still maintain the definition of
Xy, the thermodynamic force associated to Jj, as the
derivative of the local nonequilibrium entropy density
kplnw(a) with respect to {ay ), Eq. (15) read as

dJ,

1
o T

+Jk 22 ij(ak,’T'k)k
j B

9
XI+§ Ejjckj(ak,Tk) y

(17)

which may be regarded as the generalization of Eq. (16)
consistent with the hyperbolic type transport equations
given by Eq. (12). Phenomenological MCV type equa-
tions have been used in different formulations of what is
now referred to as extended irreversible thermodynamics
(EIT) [10,11], but in none of them has an effort been
made to somehow incorporate Onsager’s reciprocity
theorem at least in the context of state and time depen-
dent transport coefficients.

There is a far more difficult question to answer now,
namely, the form of the nonequilibrium entropy which is
consistent with Eq. (17). In LIT the local equilibrium as-
sumption guarantees that S=kglnw(a) is the correct
answer and as shown by Green, this leads both to a proof
that S, >.S and that the entropy production is semiposi-
tive definite. In our case we have no aprioristic way of
choosing the appropriate form for the nonequilibrium en-
tropy since clearly, Eq. (12) indicates that we are dealing
with states of the system which are no longer at grips
with the local equilibrium assumption. Moreover Eq.
(17), as has been largely manifested in EIT [10,11], shows
that the fluxes have been raised to the status of indepen-
dent states variables. Thus we should suspect that the
nonequilibrium entropy consistent with these facts ought
to be a function of the gross variables {a, ) and the fluxes
J,. Inspired by this result, also supported by an exact
solution of Boltzmann’s equation using the nontruncated
moment method developed by Grad [27] we will assume
that the nonequilibrium entropy S({a),J) is to be of the
form [28]

1
pS(<a>’J):pSLE_W§TIJ1JI 5 (18)

where S; g =kplnw({a)) is the local equilibrium entropy
of LIT, p the mass density and x( (a)) which we write as
x for short, is a still undetermined quantity that may de-
pend on the gross variables {a). An explicit example of
how an expression of the type (18) increases monotonical-
ly with time in a system where heat conduction is
governed by a hyperbolic transport equation has been re-
cently discussed in the literature [9]. In spite of this we
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warn the reader that we are by no means claiming that
Eq. (18) is neither unique nor the most general form for
the entropy. Nevertheless, it leads to rather interesting
results as we now show.

Since the time behavior of pS; g has been carefully ana-
lyzed in Green’s paper [29], we shall restrict ourselves
here to the study of the time behavior of

pASEp[s(<a>1J)_SLE(a)]=_—_) ETIJIJI .
1

Taking its time derivative we get

d d
zp(AS)“——ZET,J, dtJI ) (19)
(12) after some obvious

which with the aid of Eq.
simplifications yields,

dlnw(a)

da;

4 as)= -S|~ g+ Cylagere)
at’ > Y(a) ! 2 1\ %> Ti ;

d
+E —C,-(ak,'rk) ’ (20
7 9a;
the term (v, ) being ignored for reasons already men-
tioned.
Using the definitions of X; in terms of Inw(a) and rear-
ranging terms in Eq. (20) we finally arrive at the result
that

2-’ C,-(ak,'rk)
AS)= g BTk
& pa5)=3 25 ;2 LT,
- C( ). (21)
2 )((a) 2 3, aa y o Tk

In analogy to the local equilibrium entropy, Eq. (21)
can also be written in the form of an entropy balance
equation using the following definitions: (i) The entropy
flux vector (J;); ( jth component) in a space is

[Js]jzz Ya )chlj(ak,fk) (22)
(ii) The entropy production o, is given by
2 CI (ak,'rk)

=2 1G prone//h 222 / R 23)

It follows at once that by lettlng 3 ;(0/0a;) be the diver-
gence operation in a space, Eq. (21) takes the form

%(pAS )+div,J, =0, . (24)

The difference between Egs. (24) and (47) of Ref. [12]
for the local equilibrium entropy is that we are no longer
able to prove in general that o is semipositive definite.
The first term which is quadratic in the fluxes is always
non-negative but the sign of the full expression of Eq. (24)
is undetermined. For the present time nothing else may
be stated from a general point of view. Nevertheless Egs.
(22) and (23) may be compared with other efforts that
have been attempted in the literature to extend the con-
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cepts of irreversible thermodynamics beyond the linear
domain. One interesting feature of Eq. (22) is that it de-
pends only on a linear combination of the physical fluxes
multiplied by the generalized transport coefficients. No-
tice should be made, however, that this is within the spir-
it of Onsagerian thermodynamics since J; is defined as
the time rate of change of the gross variable (a; ). In the
many attempts that have been made to combine Grad’s
moment solution of Boltzmann’s equation with the
definition of entropy, the entropy flux has nonunique
forms depending on how the calculations are performed
[27,30]. Thus the structure of the phenomenological
equations are also questionable [30]. Here this is not the
case although to carry out a more detailed comparison,
the results of this paper must be first written in
configuration space and not in a space. This task is the
subject of future work.

As far as Eq. (23) is concerned similar comments are
applicable. Even starting from more fundamental princi-
ples than those used in this work, to derive the general
structure of nonlinear irreversible thermodynamics
[31,32] a proof that the entropy production is semiposi-
tive definite beyond the linear regime is still lacking. A
deeper discussion relating such a methodology to the one
presented in this paper is also a subject for future work.

IV. CONCLUDING REMARKS

Here we merely wish to emphasize which are the main
results obtained in this work. The central idea is to ex-
amine the derivation of the Fokker-Planck type equation
of motion that governs the dynamics of a physical system
in a space, the space associated to the numerical values of
the system’s observables. This derivation starts from the
Chapman-Kolmogoroff integral equation assuming that
the a variables a=(a,, .. .,a,) undergo a stationary ran-
dom Markoff process. The time interval 7, required for
the occurrence of two events a; and a; +Aa, is, contrary
to standard procedures, not taken to be zero. By con-
sistency with Pawula’s theorem only terms of order 7%
and (Agy)? are kept in the derivation which leads to a
Fokker-Planck type hyperbolic equation. If one then in-
troduces the average values of the a variables, also re-
ferred to as gross variables, one is led to transport equa-
tions of the hyperbolic or telegraphist type which are
now of wide use in many areas of irreversible processes.
These results, the main ones of this paper, are given by
Egs. (12) and (17). We also notice that the generalized
transport coefficients appearing in them obey Onsager’s
reciprocity relation and are also state and time depen-
dent.

The second aspect of this work which deserves atten-
tion is the fact that the generalized transport equations
here derived belong to a thermodynamic frame which lies
beyond the one supporting LIT. Indeed, as we have
shown in Sec. III the thermodynamic space of states is
not the local equilibrium one but contains also the fluxes.
This is reminiscent of the theories now referred to as EIT
but differs from them in that in our case Onsager’s re-
ciprocity theorem still holds true. Nevertheless, the total
entropy of the system is shown to obey a balance type
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equation in which the entropy flux is a linear combina-
tion of the fluxes and the entropy production is composed
of two terms, one semipositive definite quadratic in the
fluxes and a second one which is a bilinear form in the
forces, defined @ la Onsager, and the fluxes. Whether or
not this entropy production is always positive definite,
remains an open question.
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APPENDIX A

Let W(a{",t,|a{?,7,) be the transition probability for

the variable a;"’ at time ¢, to the values a2 at time

t, > t,;. The Chapman-Kolmogoroff equation states that
W(al(c”’tl Ia(3) t3)— f W(a,(cl),tl |a(2) t2
X W(aH,t,ylal>, ty)da® (A1)

for all values of ¢, t,, and ¢5. If the process is stationary

and call t;—t,=t+7,=(t;—t,)+(t,—¢t,) and let
a)=a;, a)=Aay, and a{"=a, —Aqg,, Eq. (A1) reads
as

W(ak_Aaklak,t+Tk)

= f W(ak _AakiAak,Tk)
X W(Aay, ¢ lag,t+7,)d(Aay) .

Omitting the initial state in the transition probabilities in
the left hand side and calling for short
W(a, —Aa;|Aa;,7)=W (Aa,,) the probability that a,
has the values a; —Ag, in the time interval 7, the above
equation is now

W(ak,t+'rk)=fW(ak—Aak,t)W(Aak,'rk dd(Aay) ,
(A2)

where W(a, —Aa;,t)=W(Aa,,7;la;,t +7,) is the prob-
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ability that g, has the value a; —Aq, at time ¢. Equation
(A2) with k=1, ..., ris Eq. (1) in the text.

APPENDIX B

We outline the derivation of Eq. (13) from (12) for a
single variable a,. We first multiply Eq. (12) by a,, in-
tegrate over the whole a space to get that

d2<ak> +d<ak>
T g dt
— d . .
—g fakg(:{K(z,k)-FL(z,k)}dak , (Bl)
where
K(i,k)=—(y; y+-L 2 Cjlay, )W, (B2)
L(i,k)Ez—C,“(ak,Tk) » (B3)
7 8a; Y
and
(a,)= [ a, W(a[%,tylay,t)da , (B4)

where da=T[]}_ da;.

A first integration by parts in (B1) assuming that both
K(i,k) and L(i,k) vanish along the boundary of a space
leads to

d2<ak) d<ak>
T dt
= f{ l(vk)+ 28 (@, ) | W da
d
_f z—é:C,-]-(ak,‘rk)Wdal . (BS)
J J

The second integral in the right hand side vanishes if
Cijlag, T )W is zero at the a boundary so that expanding
the term in brackets of the first integral one immediately
arrives at Eq. (13) in the text.
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